Internal
TopologicalNumbers.BerryFluxAlgorithms — TypeTopologicalNumbers.BerryPhaseAlgorithms — TypeTopologicalNumbers.FirstChernAlgorithms — TypeTopologicalNumbers.SecondChernAlgorithms — TypeTopologicalNumbers.TopologicalNumbersAlgorithms — TypeTopologicalNumbers.WeylPointsAlgorithms — TypeTopologicalNumbers.Z2Algorithms — TypeTopologicalNumbers.BerryPhase! — MethodTopologicalNumbers.ChernPhase! — MethodTopologicalNumbers.SecondChernPhase! — MethodSecondChernPhase!(v; parallel::T=UseSingleThread()) where {T<:TopologicalNumbersParallel}This function updates the second Chern number for the given system v. The parallel argument specifies whether to use parallel computation or not.
Arguments
v: The system to compute the second Chern number for.parallel: (optional) The parallel computation mode. Default isUseSingleThread().
Example
TopologicalNumbers.SecondChernPhase — MethodSecondChernPhase(p; parallel::T=UseSingleThread()) where {T<:TopologicalNumbersParallel}Main function to execute the simulation and calculate the second Chern number.
Arguments
p: Parameters for the simulation.parallel: Parallelization strategy. Default isUseSingleThread().
Returns
chern: The second Chern number.
TopologicalNumbers.Z2Phase! — MethodTopologicalNumbers.householder_complex! — Method(tau, alpha) = householder_complex!(v, x)Compute a Householder transformation such that (1-tau v v^T) x = alpha e1 where x and v a complex vectors, tau is 0 or 2, and alpha a complex number (e1 is the first unit vector)
TopologicalNumbers.householder_complex — Method(v, tau, alpha) = householder_complex(x)Compute a Householder transformation such that (1-tau v v^T) x = alpha e1 where x and v a complex vectors, tau is 0 or 2, and alpha a complex number (e1 is the first unit vector)
TopologicalNumbers.householder_real! — Method(tau, alpha) = householder_real!(v, x)Compute a Householder transformation such that (1-tau v v^T) x = alpha e1 where x and v a real vectors, tau is 0 or 2, and alpha a real number (e1 is the first unit vector)
TopologicalNumbers.householder_real — Method(v, tau, alpha) = householder_real(x)Compute a Householder transformation such that (1-tau v v^T) x = alpha e1 where x and v a real vectors, tau is 0 or 2, and alpha a real number (e1 is the first unit vector)
TopologicalNumbers.weylpoint! — Method